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Rationale: The genus Pericopsis includes four tree species of which only Pericopsis elata

(Harms) Meeuwen is of commercial interest. Enforcement officers might have difficulties

discerning this CITES‐listed species from some other tropical African timber species. Therefore,

we tested several methods to separate and identify these species rapidly in order to enable

customs officials to uncover illegal trade. In this study, two classification methods using Direct

Analysis in Real Time (DART™) ionization coupled with Time‐of‐Flight Mass Spectrometry

(DART‐TOFMS) data to discern between several species are presented.

Methods: Metabolome profiles were collected using DART™ ionization coupled withTOFMS

analysis of heartwood specimens of all four Pericopsis species and Haplormosia monophylla

(Harms) Harms, Dalbergia melanoxylon Guill. & Perr. Harms, and Milicia excelsa (Welw.) C.C. Berg.

In total, 95 specimens were analysed and the spectra evaluated. Kernel Discriminant Analysis

(KDA) and Random Forest classification were used to discern the species.

Results: DART‐TOFMS spectra obtained from wood slivers and post‐processing analysis

using KDA and Random Forest classification separated Pericopsis elata from the other Pericopsis

taxa and its lookalike timbers Haplormosia monophylla, Milicia excelsa, and Dalbergia melanoxylon.

Only 50 ions were needed to achieve the highest accuracy.

Conclusions: DART‐TOFMS spectra of the taxa were reproducible and the results of the

chemometric analysis provided comparable accuracy. Haplormosia monophylla was visually

distinguished based on the heatmap and was excluded from further analysis. Both classification

methods, KDA and Random Forest, were capable of distinguishing Pericopsis elata from the other

Pericopsis taxa,Milicia excelsa, and Dalbergia melanoxylon, timbers that are commonly traded.
1 | INTRODUCTION

1.1 | Species characteristics and international trade

Pericopsis elata, commonly known as Afrormosia, is an emblematic

species of the African rainforests that has been protected by the

Convention on International Trade in Endangered Species (CITES)1

since 1992. Its heartwood is characterized by high natural durability,

mechanical strength, and dimensional stability. This combination

makes it suitable for the most demanding applications of wood,

especially for exterior joinery. The decorative value of the wood is also
td. wileyonlinelibrary.co
appreciated for the production of luxury furniture and parquetry. In

some parts of the rainforest belt, the species is common and available

in quantities large enough for industrial logging and the international

timber trade. The market discovered the species as a precious wood,

named Afrormosia, after the Second World War. The P. elata

populations of Ghana were logged followed by those of Côte‐d0Ivoire

soon after.2 These loggings were not based on management plans

aiming at a sustainable yield and resulted in overexploitation after only

a few decades. The West‐African countries are therefore no longer

considered a source of P. elata timber. The logging shifted gradually

to the Central African rainforests of Cameroon, the Republic of Congo
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(where the species is relatively rare), and the Kisangani region of the

Democratic Republic of the Congo (DRC) in this order. There are two

additional Pericopsis species in Africa: P. angolensis (Baker) Meeuwen

and P. laxiflora (Baker) Meeuwen, whereas a single species is endemic

to Asia: P. mooniana. P. angolensis also produces high‐quality durable

timber. However, trees of this species are less abundant and too small

or poorly shaped for commercial exploitation, except in Mozambique,

where the wood is sometimes traded as Muwanga or mixed with

harvested P. elata timber.2 P. laxiflora is similar, with the same uses

but is not available in large sizes, and is by some researchers

considered a subspecies of P. angolensis.2 The Asian species,

P. mooniana, which ranges from Sri Lanka east to New Guinea and

Micronesia, is mainly exported from Indonesia to Japan.3

Because of law enforcement concerns, there is a need to

distinguish P. elata from the other Pericopsis species and lookalike

timbers. There have been documented fraudulent imports of P. elata

declared as Milicia excelsa, a non‐CITES listed species. The timber of

P. elata can also be confused with Dalbergia melanoxylon (CITES

App. II) from Africa. Traditional identification of wood has relied on

anatomical features such as those in the extensive online database

InsideWood.4 When searching InsideWood using standardized

wood anatomical features of P. elata, the results indicate that several

other species, such as D. melanoxylon and Haplormosia monophylla,

have similar wood structures. D. melanoxylon is a timber species that

also occurs in Central Africa. H. monophylla, which is taxonomically

closely related to P. elata, also occurs in Africa and it is traded by

the common name of Idewa. To a lesser extent, the timber of the

three other Pericopsis species might also be sold or confused with

P. elata.2
1.2 | Species identification based on wood anatomy

It is therefore important for law enforcement officers to be able to

discriminate between the abovementioned species. The anatomical

features described in the IAWA Hardwood List5 and used in

InsideWood are adequate for narrowing down the number of possible

identities of a hardwood sample, but their discriminatory ability is

limited for closely related taxa with very similar features. This is the

case with Pericopsis and Haplormosia, which have similar paratracheal

axial parenchyma (ranging from scanty paratracheal through

vasicentric to aliform to confluent and banded, especially in

Haplormosia), storied axial parenchyma in mainly four‐celled strands,

and rays generally up to three or four cells wide and storied.

P. mooniana appears to have sparser vessels and more distinct aliform

and confluent parenchyma than the other Pericopsis species, but this

observation is based on a single microscope slide in Kew0s reference

collection (Royal Botanic Gardens, Richmond, UK), and the literature

in InsideWood and Plant resources of South‐East Asia 5 (PROSEA).3

It becomes more difficult to differentiate between P. angolensis,

P. elata, and P. laxiflora based on wood anatomical features.

Comparing these species using InsideWood leads to minor and

variable differences. Only P. elata appears to have vasicentric axial

parenchyma. However, vasicentric axial parenchyma was also present

in two transverse sections of P. angolensis, provided by the Royal

Museum for Central Africa (RMCA, Tervuren, Belgium). P. laxiflora
appears to have more bands of parenchyma and few to no high rays.

This was observed by comparison of two transverse and tangential

sections with two and three slides of P. elata and P. angolensis,

respectively. Another interesting feature is the presence of unilateral

parenchyma in P. elata, which is rarer in P. angolensis and almost

lacking in P. laxiflora. The wood of M. excelsa is very unlikely to be

confused with P. elata or H. monophylla under the microscope

because none of the cells are storied, the rays are wider with a single

row of upright cells at the margins, and each one often contains

a single prismatic crystal. However, M. excelsa has been

confused with P. elata based on morphological macroscopic wood

features. InsideWood shows extensive anatomical information on

D. melanoxylon. As stated before, using InsideWood with the

standardized wood anatomical features of P. elata may lead to its

identification as a Dalbergia species. Therefore, using the wood

anatomical database alone could lead to an incorrect species

identification.
1.3 | Using DART‐TOFMS data for species
identification

Direct Analysis in Real Time (DART) (see Cody et al6) Time‐Of‐Flight

Mass Spectrometry (TOFMS) has shown promise in the analysis of

wood and plants. Previous research using DART‐TOFMS spectra was

able to distinguish between two species of American oak (Quercus alba

L. and Quercus rubra L.),7 between four species of agarwood (Aquilaria

spp.),8,9 and between Dalbergia timbers from Africa, Madagascar and

Asia.10 Recent research has focused on the identification of plant

species (Mitragyna speciosa (Korth.) Havil and Datura),11 discrimination

among selected CITES‐protected Araucariaceae,12 and differentiating

coastal from inland populations of Douglas fir (Pseudotsuga menziesii

(Mirb.) Franco) using Random Forest classification algorithms.13 The

main goal of this study is to determine if Pericopsis elata could be

distinguished from the following species using DART‐TOFMS:

P. angolensis, P. laxiflora, P. mooniana, M. excelsa, H. monophylla, and

D. melanoxylon. A second goal was to determine: (1) which classification

technique, Kernel Discriminant Analysis (KDA) or Random Forest,

performs better to separate these species; (2) if by using the variable

(ions) importance lists retrieved from the Random Forest, the KDA

could be improved; and (3) the lowest number of ions needed to

separate the species.
2 | EXPERIMENTAL

2.1 | Materials

Heartwood samples of all Pericopsis species, M. excelsa, H. monophylla,

and D. melanoxylon, were provided by different institutions. Table S1

(supporting information) lists the different samples with their

geographic provenance, country of origin, and the source and number

of specimens.

Species validation of the commercial timber samples was

performed by comparing their mass spectra with those of curated

xylaria (authenticated wood specimens collection) reference samples.
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2.2 | DART TOFMS analysis

The specimens were analysed using a DART‐SVP ion source (IonSense,

Saugus, MA, USA) coupled to a AccuTOF 4G LC mass spectrometer

(Jeol USA, Peabody, MA, USA). Heartwood slivers are placed directly

in a stream of heated helium gas, produced by the DART ion source.

Spectra were acquired in positive ion mode with the DART ion source

parameters and mass spectrometer settings as defined in Evans et al,12

McClure et al,10 Lancaster and Espinoza,8 and Espinoza et al.9 The

spectra were obtained over the mass range of m/z 50–700. The text

files of the mass‐calibrated, centroided mass spectra were exported

using TSS Unity (Shrader Software Solutions, Inc., Grosse Pointe Park,

MI, USA) data reduction software and used for further analysis.
2.3 | Specimen classification methods

A heatmap, showing the intensity of each ion‐mass (m/z value) in the

specimen (Figure 1), was created using the Mass Mountaineer Mass

Spectral Interpretation Tools software (RBC Software, Peabody, MA,

USA). Next, KDA was performed with the same Mass Mountaineer
FIGURE 1 Heatmap of the ions present in the analysed specimens. The
The Y‐axis indicates specimen number with its chemotype grouped per sp
the abundance of the ions in the specimens [Color figure can be viewed a
software package using a tolerance of 5 mDa and a 1% relative

abundance threshold. KDA is a generalization of linear discriminant

analysis (LDA) where the principal components are nonlinearly related

to the input variables in the transformed space.14 Each specimen is

assigned to a class in the grouping variable (in this case species), and

KDA then calculates the maximum separation between species

classes in a training set. This is then mapped in the nonlinear

higher‐dimensional space.12 KDA determines the species separation

based on a subset of appropriate ions. The selected ions are those

that are unique to one species, or which show higher intensity in

one taxon but lower intensities in others. This process is simplified

by a visual inspection of the heatmap. The model accuracy is assessed

using leave‐one‐out‐cross‐validation (LOOCV, see Lever et al15 and

McClure et al10).

The results of the KDA were compared with those from the

Random Forest method, which is implemented in the randomForest

package16 in R, which is a free software environment for statistical

computing and graphics. All calculations were performed in RStudio

(RStudio Team, 2015), an open source software for R. Spectral data

were exported from Mass Mountaineer (tolerance of 250 mDa and
X‐axis is the mass‐to‐charge ratio (m/z) of the molecules detected.
ecies. The intensity of the red squares in the heatmap correlates with
t wileyonlinelibrary.com]
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TABLE 1 Total sample number per species group

Group Species Samples

Pericopsis elata Pericopsis elata 22

Pericopsis (others) Pericopsis angolensis 21

Pericopsis laxiflora 5

Pericopsis mooniana 10

Dalbergia melanoxylon Dalbergia melanoxylon 19

Milicia excelsa Milicia excelsa 18

Sum 95
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1% threshold) to Microsoft Excel and imported into RStudio. A

Random Forest is best described as a set of n regression or

classification trees.17,18 The dataset is randomly split into a training

and validation dataset, in this case 80% and 20%, respectively. Each

tree is constructed using a different subset of samples of the training

dataset with the objective of classifying each sample to a class in the

grouping variable (species). Each node in the tree is split using the best

predictor variable, here ion relative abundance, among a randomly

chosen subset of predictor variables.16,19 In total, 10,000 classification

trees were created to build the Random Forest with 50 randomly

chosen ions at every node split. Model accuracy is determined by the

out‐of‐the bag (OOB) principle. At each bootstrap iteration the

samples that were not used in the training set are used to validate

the current tree in that bootstrap iteration.16 The overall OOB

accuracy is reported as the estimation of the error rate, indicating

the misclassification of samples. Instead of using the OOB

classification error, we report the complement, or the Random Forest

classification accuracy, to compare with the validation rate of LOOCV

in KDA (OOB error + Random Forest classification accuracy = 1).13

Before determining the performance of the Random Forest through

the validation dataset, the classification error of the samples per

species in the training set is given. This is a first indication of which

species will be problematic. Finally, the performance of the Random

Forest classification is determined using the validation dataset to test

the model. Several measures for variable importance can also be

assessed, which in this case indicate specific ions that are key for

differentiating among species. The first measure is the Gini‐index or

Mean Decrease in Impurity (MDI), which is used to quantify the

impurity in each node.18 A second measure, based on permutation of

the OOB data, is the Mean Decrease in Accuracy (MDA) and aims at

improving the accuracy. The difference in prediction accuracy is a good

indicator of variable importance.18 A comprehensive review of MDI vs

MDA can be found in Perrier0s "Feature Importance in Random Forest".20

The lists of ions, ranked by variable‐importance, were then used

for KDA to determine if the Random Forest‐generated ions give a

higher classification accuracy than the empirical ion selection

described above. Experiments were conducted with different numbers

of ions (5, 10, 20, 30, 50, 100, 200, and 256) based on the importance

values from the Random Forest.
2.4 | Model comparison

The KDA results were compared with those from the Random Forest

classification under two different conditions. The KDA of the Pericopsis

and the lookalike species was based on 65 ions. This experiment

excluded H. monophylla because of the small sample size. The second

KDA consisted of only Pericopsis taxa, and 248 ions were used for

the classification. The species used and their respective sample sizes

are listed in Table 1.
3 | RESULTS AND DISCUSSION

Figure 1 shows the heatmap for the different species analysed. The

chemotype of H. monophylla is present in the heat map but was
removed from the classification models due to the small sample size.

However, this species could be separated from the other species

based on visual inspection of the heatmap. As shown in Figure 1,

the chemotypes for H. monophylla, M. excelsa, and D. melanoxylon

are different from those of the Pericopsis species. In addition, some

differences appear among the chemotypes of the Pericopsis taxa.

For example, P. laxiflora seems to have more intense ions around

m/z 409. P. angolensis can be differentiated by looking at the ions

around m/z 285 and 299 and a lack of consistent intensity around

m/z 205. The surprising find that the chemotype of P. laxiflora is

dissimilar to the chemotype of P. angolensis erodes the support for

the hypothesis that P. laxiflora could be a subspecies of P. angolensis.2

However, a larger sample size of P. laxiflora is needed to statistically

test this observation. Only P. mooniana has ions at m/z 260 and

273, and these are absent in the other Pericopsis species. Figures 2

and 3 show the KDA graphical representation of two different

datasets. Figure 2 shows that the KDA classification algorithms

clustered each of the Pericopsis species separately, whereas Figure 3

shows the separation of the protected P. elata from the other species.

The main goal of this study was to separate the CITES‐listed

P. elata from the other species in its genus and from its lookalikes.

The LOOCV (KDA) was 95.79%, and the classification accuracy of

the Random Forest was 96.05%, indicating that both KDA, with the

empirically chosen ions, and Random Forest enabled us to correctly

identify P. elata to a satisfactory level. Table 2 shows the confusion

matrix, which summarizes the classification of the training dataset for

the Random Forest. As can be seen, P. elata shows the lowest

classification accuracy, but it was still high. Only two of the 16 samples

are misclassified. Afterwards, the Random Forest is validated using the

prediction data. Table 3 shows the results for the classification of

the prediction data. In this example, the Random Forest classified all

samples correctly. Next, we tried to differentiate between Pericopsis

species. The LOOCV was 88.89% and the Random Forest accuracy

was 93.75%. These results are, however, based on an unbalanced

dataset, with only five samples for P. laxiflora compared with, for

example, the 21 samples from P. angolensis. Although the final model

performance is satisfactory, it might affect the model variability and

the handling of misclassifications.13 The overall classification accuracy

is not significantly affected; however, this is often not an appropriate

performance measure in learning extremely unbalanced data.21 Using

these small unbalanced datasets increases the risk of leaving a certain

species out of the training dataset bootstrapping, skewing the model

towards the more abundant species. Possible solutions are suggested



FIGURE 2 Graphical representation of the Kernel Discriminant Analysis of the four Pericopsis species, showing that the species segregate distinctly
(LOOCV is 88.89%) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Graphical representation of the Kernel Discriminant Analysis showing that Pericopsis elata can be distinguished from Pericopsis (other),
Dalbergia melanoxylon and Milicia excelsa (LOOCV is 95.79%) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Confusion matrix from the Random Forest of dataset 1 (all the species) based on the training set

Dalbergia melanoxylon Milicia excelsa Pericopsis (other) Pericopsis elata Classification accuracy

Dalbergia melanoxylon 16 100.00

Milicia excelsa 13 1 92.86

Pericopsis (other) 30 100.00

Pericopsis elata 2 14 87.50

Note that the classification accuracy is shown and not the classification error

TABLE 3 Classification of the prediction set for dataset 1 (all the species)

Dalbergia melanoxylon Milicia excelsa Pericopsis (other) Pericopsis elata

Dalbergia melanoxylon 3

Milicia excelsa 4

Pericopsis (other) 6

Pericopsis elata 6
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by Chen et al.21 This was, however, outside the scope of the current

study and should be investigated further.

Supplementary goals of this study were to determine if

empirically selected variables (ions) provided the same level of

accuracy as the ions selected by the Random Forest algorithm and

the minimum number of ions required to obtain the highest

classification accuracy. Random Forest provides two ways of

determining variable (i.e., ion) importance, the MDI and MDA. The

Random Forest analysis produces a ranked list of variables (ions) that

have the highest importance in separating classes, and, in this case,
the most valuable ions for separating P. elata from the other lookalike

species. This ranked list of ions was used to perform KDA, and the

results were compared with those from the ions selected by Random

Forest. Table 4 compares the accuracy of the two approaches using

the calculated LOOCV. Table 4 also shows the results when different

numbers of ions were used and the resulting LOOCV based on the

most important ions according to MDI and MDA (ranging from 5 to

256 ions). It is clear that the highest LOOCV accuracy, for the lowest

number of ions, was obtained with the 50 most important ions

selected by the MDI algorithm of Random Forest.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


TABLE 4 The LOOCV for the KDA performed using manually chosen
ions, and based on the most important ions according to MDI and
MDA, and the OOB estimation of error rate from the Random Forest
for dataset 1 (all the species)

% MDI MDA

LOOCV – 5 70.53 70.53

LOOCV – 10 76.84 76.84

LOOCV – 20 94.74 94.74

LOOCV – 30 92.63 94.74

LOOCV – 40 94.74 93.68

LOOCV – 50 95.79 92.63

LOOCV – 100 94.74 95.79

LOOCV – 200 95.79 95.79

LOOCV – 256 95.79 95.79

LOOCV – manual 95.79

OOB 3.95

1 – OOB 96.05
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4 | CONCLUSIONS

We have demonstrated that the identification of P. elata can be

accomplished using DART‐TOFMS spectra. Although the heatmap of

the Pericopsis taxa appears to be similar, the statistical post‐processing

of the spectra can be used to identify species with high accuracy. The

chemotypes shown in the heatmap (Figure 1) of M. excelsa,

D. melanoxylon, and H. monophylla are very different from those of

the four other Pericopsis species, and minor differences in the

chemotypes of the Pericopsis taxa can also be observed. The

chemotype of P. laxiflora is dissimilar to the chemotype of P. angolensis.

This observation does not support the hypothesis that P. laxiflora could

be a subspecies of P. angolensis,2 and a larger sample size of P. laxiflora

will permit statistical testing of this.

Taxa classifications using KDA and Random Forest algorithms

have similar and satisfactory success rates, showing that both methods

can be used to determine the species identity. A recurring challenge

when performing KDA is to determine which variables to use, as

suboptimal choices may lead to overfitting and bias through arbitrary

selection of discriminant ions. However, Random Forest algorithms

are based on dataset training and multiple bootstrap iterations, rather

than analyst judgment, and do incorporate all ions detected among

samples. The results from the Random Forest classification analysis

are therefore more objective. It was, however, interesting to note that

KDA through manual selection of ions provides similar classification

accuracy to Random Forest. We show that the variable importance

measures included in the Random Forest can, however, aid in the ion

choice for KDA. For this case, we observed that only 50 ions were

needed to achieve the best accuracy. We conclude that, in addition

to wood anatomy, timber samples that have questionable origin can be

analyzed by DART‐TOFMS and the resulting spectra can be evaluated

using either KDA (LOOCV 95.79%) or Random Forest (96.05%).

Ultimately, DART‐TOFMS and post‐processing analysis of the

spectra provide robust identifications of timbers when traditional

wood anatomical methods are indecisive, or if the required expertise

is unavailable, and these tools provide an additional approach for
combatting illegal timber trade. The success of this method naturally

depends on the availability of samples to ensure balanced datasets.

The authors would like to take this opportunity to invite xylaria

throughout the world to share their vast collections.
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